UNIVERSITY OF BELGRADE TECHNICAL FACULTY IN BOR

# BOOK OF ABSTRACTS

THE TY SECOND SE

8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES



NWW. Tibor. bg. ac. rs



20-21 October, Bor Lake, Serbia

Editor: Uroš Stamenković



## **Book of Abstracts,**

8th International Student Conference on Technical Sciences ISC 2023

#### **Editor:**

Doc. dr Uroš Stamenković

University of Belgrade - Technical Faculty in Bor

Technical Editors: Milan Nedeljković, dipl. ing. Avram Kovačević, dipl. ing.

University of Belgrade - Technical Faculty in Bor

Publisher: University of Belgrade - Technical Faculty in Bor

For the publisher: Dean, Prof. dr Dejan Tanikić

Circulation: 50 copies Year of publication: 2023

Printed by "GRAFIKA GALEB DOO" NIŠ, 2023

### ISBN 978-86-6305-141-6

СІР - Каталогизација у публикацији Народна библиотека Србије, Београд

622(048) 669(048) 66(048) 66.017/.018(048)

INTERNATIONAL Student Conference on Technical Sciences (8; 2023; Borsko jezero)

Book of abstracts / 8th International Student Conference on Technical Sciences ISC 2023, 20-21 October, Bor Lake, Serbia; [organized by University of Belgrade, Technical Faculty in Bor]; editor Uroš Stamenković. - Bor: University of Belgrade, Technical Faculty, 2023 (Niš: Grafika Galeb). - VII, 51 str.; 24 cm

Tiraž 50. - Bibliografija uz većinu apstrakata.

ISBN 978-86-6305-141-6

а) Рударство -- Апстракти b) Металургија -- Апстракти v) Хемијска технологија -- Апстракти g) Технички материјали -- Апстракти

COBISS.SR-ID 126594825



# 8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES

October 20<sup>th</sup> – 21<sup>st</sup>, 2023, Bor lake in Bor (Serbia) www.tfbor.bg.ac.rs https://ioc.tfbor.bg.ac.rs/isc2023/

# 8<sup>th</sup> International Student Conference on Technical Science, ISC 2023.

# Is organized by

# UNIVERSITY OF BELGRADE, TECHNICAL FACULTY IN BOR

and co-organized by

University of Zenica, Faculty of engineering and natural sciences, Zenica, Bosnia and Herzegovina

University in Priština, Faculty of Technical Science, Kosovska Mitrovica, Serbia:

University of Montenegro, Faculty of Metallurgy and Technology, Podgorica, Montenegro;

University of Tuzla, Faculty of Technology, Tuzla, Bosnia and Herzegovina;

University of Chemical Technology and Metallurgy, Faculty of Metallurgy and Material Science, Sofia, Bulgaria;



# 8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES

October 20<sup>th</sup> – 21<sup>st</sup>, 2023, Bor lake in Bor (Serbia) www.tfbor.bg.ac.rs https://ioc.tfbor.bg.ac.rs/isc2023/

| 15. | Student: Milena Stajić; Mentor: Uroš Stamenković (Serbia)                                            |    |
|-----|------------------------------------------------------------------------------------------------------|----|
|     | EFFECT OF THE AUSTENITIZING TEMPERATURE ON THE PROPERTIES OF                                         | 23 |
|     | 51CrV4 SPRING STEEL                                                                                  |    |
| 16. | Students: <b>Željka Nikolić, Nebojša Radović;</b> Mentor: <b>Olga Tešović</b> (Serbia)               |    |
|     | WHY SHOULD USED CREOSOT IMPREGNATED WOOD WASTE                                                       | 25 |
|     | BE CHARACTERIZED AS HAZARDOUS?                                                                       |    |
| 17. | Students: Nebojša Radović, Željka Nikolić; Mentor: Ksenija Stojanović (Serbia)                       |    |
| 1,, | CAPTURING SULFUR DIOXIDE AT ITS SOURCE: SIMPLE AND                                                   | 27 |
|     | EFFICIENT METHOD FOR SAMPLING AND QUANTIFICATION                                                     | 41 |
|     |                                                                                                      |    |
| 18. | Student: Milan Nedeljković; Mentors: Srba Mladenović, Jasmina Petrović (Serbia)                      |    |
|     | STUDIES OF THE INFLUENCE OF GRAPHENE NANOSHEETS ON THE                                               | 28 |
|     | WETTABILITY OF LEAD-FREE SOLDER ALLOYS                                                               |    |
| 19. | Students: Tamara Tasić, Vedran Milanković; Mentor: Tamara Lazarević-Pašti                            |    |
|     | (Serbia)                                                                                             |    |
|     | ACTIVATED POROUS CARBON MATERIALS DERIVED FROM VISCOSE FIBERS                                        | 29 |
|     | FOR CHLORPYRIFOS REMOVAL FROM WATER                                                                  |    |
| 20. | Students: Veljko Pelić, Sandra Milićević; Mentors: Žaklina Tasić, Maja Nujkić                        |    |
|     | (Serbia)                                                                                             | 20 |
|     | THE EFFICIENCY OF NICKEL ION ADSORPTION FROM SYNTHETIC                                               | 30 |
| 21. | SOLUTIONS USING MULLEIN Studenter Sandra Milifarif Velika Balifa Mantaga Maia Neilrif Zaklina Tanif  |    |
| 21. | Students: <b>Sandra Milićević, Veljko Pelić;</b> Mentors: <b>Maja Nujkić, Žaklina Tasić</b> (Serbia) |    |
|     | THE EFFICIENCY OF ZINC ION ADSORPTION FROM SYNTHETIC SOLUTIONS                                       | 31 |
|     | USING MULLEIN                                                                                        | 31 |
| 22. | Student: Andreja Grujić; Mentor: Srba Mladenović (Serbia)                                            |    |
|     | APPLICATION OF SOFTWARE PACKAGES IN THE VISUALIZATION OF THE                                         | 32 |
|     | CASTING PROCESS-EXPERIENCE                                                                           | 32 |
| 23. | Students: Jovana Mitrović, Milica Borisavljević, Vanja Milovanović, Predrag                          |    |
| 20. | Radulović; Mentor: Filip Miletić (Serbia)                                                            |    |
|     | ANALYSIS OF WORKING EFFICIENCY OF THE BUCKET WHEEL EXCAVATOR                                         | 33 |
|     | SCHRS 1400.28/3 ON OPEN CAST MINE FIELD C                                                            |    |
| 24. | Students: Marko Krpić, Aleksandar Đorđević; Mentor: Boris Rajčić (Serbia)                            |    |
|     | INVESTIGATION ON THE CO2 BREAKTHROUGH BEHAVIOUR OF DIFFERENT                                         | 35 |
|     | MATERIALS                                                                                            |    |
| 25. | Students: Željka Nikolić, Adrijana Šutulović, Boris Rajčić, Dubravka Milovanović,                    |    |
|     | Vladimir Nikolić, Zoran Šaponjić; Mentor: Milica Marčeta (Serbia)                                    |    |
|     | TRACKING THE ABSORPTION ABILITY OF EXHAUST GASES MODEL MIXTURE                                       | 36 |
|     | USING AN AQUEOUS SOLUTIONS OF NaOH AND KOH                                                           |    |
| 26. | Students: <b>Nebojša Radović, Željka Nikolić;</b> Mentor: <b>Olga Tešović</b> (Serbia)               |    |
|     | MANAGING THE HAZARDOUS CHEMICAL WASTE IN LABORATORIES: ARE WE                                        | 38 |
|     | ON THE RIGHT PATH?                                                                                   |    |
| 27. | Students: Marija Divac, Lana Mitrovic, Jovana Milosevic, Marko Rakita; Mentor:                       |    |
|     | Filip Miletić (Serbia)                                                                               |    |
|     | MODELLING AND STRESS ANALYSIS OF MACHINE ELEMENTS IN                                                 | 40 |
|     | SOLIDWORKS SOFTWARE                                                                                  |    |
| 28. | Student: Vesna Miljić; Mentors: Bojan Miljević, Snežana Vučetić (Serbia)                             |    |
|     | VISIBLE-LIGHT PHOTOCATALYTIC DEGRADATION OF MODEL POLLUTANT                                          | 41 |
|     | (MO-METHYL ORANGE) IN SOLID-STATE                                                                    |    |
|     |                                                                                                      |    |



## 8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES

October 20<sup>th</sup> – 21<sup>st</sup>, 2023, Bor lake in Bor (Serbia) www.tfbor.bg.ac.rs https://ioc.tfbor.bg.ac.rs/isc2023/

# INVESTIGATION ON THE CO<sub>2</sub> BREAKTHROUGH BEHAVIOUR OF DIFFERENT MATERIALS

Students: Marko Krpić<sup>1,2</sup>, Aleksandar Đorđević<sup>2,3</sup> Mentor: Boris Rajčić<sup>3</sup>

<sup>1</sup>Trayal Corporation, Kruševac, 37000, Serbia <sup>2</sup>University of Belgrade, Faculty of Chemistry, Belgrade, 11158, Serbia <sup>3</sup>Institute of General and Physical Chemistry, Belgrade, 11158, Serbia

#### **Abstract**

The fabrication and manufacturing processes of industrial commodities such as iron, glass, and cement are carbon-intensive, accounting for 23% of global CO<sub>2</sub> emissions. Chemical absorption is one of the most promising technologies for CO<sub>2</sub> capture. The development of adsorption-based technologies for CO<sub>2</sub> capture in the post combustion processes requires finding materials with high capacity of adsorption and low cost of preparation. In recent years, carbon capture and utilization (CCU) has been proposed as a potential technological solution to the problems of greenhouse-gas emissions and the ever-growing energy demand. To combat climate change and ocean acidification as a result of anthropogenic CO<sub>2</sub> emissions, efforts have already been put forth to capture and sequester CO<sub>2</sub> from large point sources, especially power plants. In this work, zeolite 13X was used as potential materials for CO<sub>2</sub> adsorption. The method used for testing was based on the simulation of air flow of a certain composition using a test station, where it is the flow rate and air humidity can be adjusted. The results are presented in graphs together with adsorption capacities. For the applied conditions in this research, satisfactory results were obtained in a high percentage. Obtained results for 13X illustrate its potential as an effective adsorbent for the selective separation of CO<sub>2</sub> from air. Also, this method may be used for the separation of CO2 from flue gas exhaust or other greenhouse gas emissions, and may have important applications in the pressing areas of sustainability and climate change mitigation.

Keywords: Adsorption CO<sub>2</sub>, Zeolite, CCU, Climate change

#### **ACKNOWLEDGEMENT**

The authors would like to thank the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (contract no. 451-03-47/2023-01/200051)

# REFERENCES

- [1] C.Y. Chuah, W. Li, Y. Yang, T.-H. Bae, Evaluation of porous adsorbents for CO<sub>2</sub> capture under humid conditions: The importance of recyclability, Chemical Engineering Journal Advances, 3 (2020), 100021.
- [2] N. Konduru, P. Lindner, N. Marie Assaf-Anid, Curbing the greenhouse effect by carbon dioxide adsorption with Zeolite 13X, AlChE Journal, 53(12) (2007), p. 3137-3143.
- [3] C. Chen, D.-W. Park, W.-S. Ahn, CO<sub>2</sub> capture using zeolite 13X prepared from bentonite, Applied Surface Science, 292 (2014), p. 63-67.







20-21 October, Bor Lake, Serbia

